『宇宙が見える数学』――宇宙は大きさが有限だが境界はない

小笠英志=著
表紙 宇宙が見える数学
著者 小笠 英志
出版社 講談社
サイズ 新書
発売日 2024年10月17日頃
価格 1,100円(税込)
ISBN 9784065375990
偉大な理論物理学者のエドワード・ウィッテンは、結び目理論が宇宙論や超弦理論と非常に関係が深いということを発見しました。彼は超弦理論を専門とする物理学博士ですが、ノーベル物理学賞ではなくて数学の賞であるフィールズ賞を受賞しています。

概要

宇宙が見える数学
著者は、数学者で日本SF作家クラブ会員の小笠英志 (おがさ えいじ) さん。トポロジー(位相幾何学)とは、大雑把に言えば、伸ばしたり引っ張ったりして一致すれば同じ図形を扱う奇妙な幾何学だ。
宇宙は大きさが有限だが境界はない――宇宙がどのような構造をしているか思い浮かぶだろうか。本書では、トポロジーの視点で、実際に紙工作をしながら、真の図形に迫る。
トーラス
トーラス
第1章では、結び目の解説を通じ、超弦理論(超ひも理論)がなぜ究極理論なのかに触れる。超弦の現れ方として、トーラスやメビウスの輪の性質を、実際に紙工作をしながら確認する。
第2章では、4次元を見るためにクラインの壺を取り上げる。クラインの壺は、3次元空間ではどうやっても自己接触するが、4次元空間では自己接触せずに実現できるという。
テッセラクト
テッセラクト
第3章では、「テッセラクト(tesseract)」「4次元キューブ(4-dimensional cube)」などと呼ばれる4次元立方体の展開図は、3次元立方体を組み合わせた形になる――これは3次元立方体の展開図から類推できることだ。
第4章では、宇宙の果てを考えるのに、傍聴する3次元球面 $ S^3 $ を持ち出す。これは、じつは中身が空の4次元立方体(先ほどのテッセラクト) $ \mathbb{R}^4 $ のなかで
$$ \{ (x, y, z, t) \mid x^2 + y^2 + z^2 + t^2 \le 1 \} $$
とあらわすことができる。
ボーイ・サーフェス
ボーイ・サーフェス
第5章では、曲面が2次元なのに5次元が必要になる不思議な図形「ボーイ・サーフェス」ととりあげる。
「標準理論」と呼ばれる素粒子論(場の量子論・ゲージ理論)はかなり完成しているが、重力がゼロを前提としている。ブラックホールの近くではどうなるのか。それを第6章で考える。超弦理論が、それに近づいているとされているが、まだ完全なモデルではない。こういうモデルを「トーイ・モデル(toy model)」と呼ぶ。
宇宙が見える数学
第7章・8章では宇宙の形のまとめに入る。
宇宙の条件は、
  1. 宇宙のどの点も、その点のまわりは、小さい3次元空間だ。
  2. どこまで行っても境界はない。
  3. 有限の大きさを持つ。
無限に大きい3次元空間$ \mathbb{R}^3 $は3.を満たさないが、3次元球体は $ S^3 $ は3つの条件を満足する。3次元実射影空間 $ \displaystyle \mathbb{R}^{4^{P^3}} $ やポアンカレ・ホモロジー球面(ポアンカレ球面)も3つの条件を満たす。つまり、宇宙の形は1つに絞られているわけではない。

レビュー

UFOに驚く少女
宇宙は大きさは有限だが境界はない――思い返してみれば、この宇宙モデルをすんなり受け入れられたのは、UFOブームの延長線上で、数学で立体図形を扱うよりも早くクラインの壺のような謎造型に出会っていたからだろう。最初に読んだトポロジー本は、たしかブルーバックスの『やさしいトポロジー』だったと思う。
4次元立方体が登場するSF作家ロバート・A・ハインラインの『歪んだ家』は私も読んだが、本書の説明を読んで、ようやくその仕組みが理解できた。『歪んだ家』は数学的にも正しい。
私は図形(幾何学)は苦手なのだが、代数は得意なので、3次元球面 $ S^3 $ を方程式で $ x^2 \ + \ y^2 \ + \ z^2 \ + \ w^2 \ = \ R^2 $ と書いてくれた方が助かる。2次元球面の方程式から容易に類推ができるからだ。第2章で唐突に登場する「3次元空間」の $ \mathbb{R}^3 $  (アールスリー) は実数空間を表す数学の記号だ。これは分かりやすい。

波形やLLMをやっていると、次元数が11になっても12になっても、それほど驚かないのだが、ただ「宇宙の形」となると、実際の図形(モデル)として表現できないだけに、なんとももどしかしい。ただ、われわれが知覚しているのは、宇宙を切り取ったほんの一部であることは確かだろう。残りは想像で埋めるしかない。
(2025年8月16日 読了)

参考サイト

参考書籍

(この項おわり)
header